Физика в моей жизни и профессии. Физика в моей будущей профессии

Физиком является тот, кто использует свое образование и опыт для изучения и практического применения взаимодействий между материей и энергией в области механики, акустики, оптики, тепла, электричества, магнетизма, излучения, атомной структуры и ядерных явлений.

Карл Дарроу

Популярность технических специальностей растет с каждым днем. Чтобы стать высококлассным специалистов в этой области, необходимы глубокие знания в точных науках: математике, физике, химии, информатике. Любая современная специальность связана с физикой. Сегодня каждый специалист должен уметь работать с необходимой для данной профессии техникой, а также понимать суть технологических процессов.
Физика – фундаментальная наука. В основе всех технических наук, так или иначе, лежат физические законы и явления. Физика тесно связана с инженерией, программированием, радиотехникой, металлургией, машиностроением, авиа- и ракетостроением, электро- и теплоэнергетикой, горным и нефтегазовым делом. Специалисты, знающие физику, необходимы в сфере строительства, медицины, механики, автоматики и электроники, высоких технологий и во многих других областях.

Физик

Физик – ученый, чьи научные исследования в основном посвящены физике. Физики работают над широким кругом проблем, начиная от субатомных частиц и заканчивая поведением Вселенной.

Предметом профессиональной деятельности физика является область науки и техники, включающая совокупность средств, приемов, способов и методов для получения полной и достоверной информации о характере и количественных закономерностях протекания физических процессов в окружающем мире, существующих и новых технических системах для разных отраслей.

Физик занимается исследованием объектов окружающего мира и законов их взаимодействия. Объекты он рассматривает как физические тела, а их взаимодействие – как физические явления. Проводит физические исследования посредством эксперимента, занимается построением математических моделей физических явлений, описывает базовые свойства окружающего мира. Изучение физических явлений позволяет физикам открывать общие законы и использовать их в целях прогресса.

Для физика важны наблюдательность и любознательность, настойчивость и желание узнавать новое, терпение и критичность мышления, склонность к экспериментам, интерес к природе и способность к научному творчеству. Профессия требует от специалиста в основном интеллектуальных затрат. Деятельность связана с анализом, сравнением и интерпретацией данных, выработкой новых решений.

В рамках профессии «физик» существует множество специализаций.

Физик-ядерщик проводит научные исследования поставленных проблем в области ядерной физики. Предметами профессиональной деятельности физика-ядерщика являются ядерно-физические явления и процессы (ядерные реакции, радиоактивность, взаимодействие ядерного излучения с веществом, ядерная изомерия, ядерно-магнитный резонанс, взаимодействие нейтронов с ядрами, термоядерные реакции, управляемый термоядерный синтез и др.); радиоактивные вещества; приборы, механизмы и оборудование ядерно-энергетического комплекса. Физик-ядерщик разрабатывает, осуществляет и контролирует состояние производственно-технологического процесса на предприятиях ядерно-энергетического комплекса.

Биофизик – специалист по изучению биологических проблем, причина которых – физико-химические жизненные процессы.

Биофизика – область науки, которая изучает физические и физико-химические явления, которые происходят в живых организмах. Эта область науки связана с изучением различных биологических процессов или явлений при помощи лабораторных экспериментов и математических вычислений. Основная задача биофизика – изучение физических и химических процессов, способных вызвать биологическую проблему.

Биофизик изучает физические и физико-химические процессы в живых организмах на всех уровнях организации живой материи, а также тонкую структуру различных биологических систем. Биофизик занимается также изучением влияния на организм таких физических факторов, как вибрация, ускорение, невесомость, исследует биологическое действие ионизирующих излучений, осуществляет физический анализ деятельности органов чувств и анализ работы органов движения, дыхания, кровообращения как физических систем, решает вопросы прочности и эластичности тканей.

Инженер

Инженерная профессия всегда была основой мирового развития. Уровень технического оснащения еще до начала нашей эры определял превосходство одной цивилизации над другими. И сегодня именно технические новшества обеспечивают развитие цивилизации.

Сегодня инженерные профессии – самые многочисленные профессии высококвалифицированного труда. В нашей стране более трети специалистов с высшим образованием – инженеры. Инженер участвует в производстве всех материальных благ общества – от продуктов питания и товаров повседневного спроса до сложных вычислительных машин и космических ракет.

Современный инженер – это специалист, обладающий высокой культурой, хорошо знающий современную технику и технологию, экономику и организацию производства, умеющий пользоваться инженерными методами при решении инженерных задач и в то же время обладающий способностью изобретательства. Работа инженера – это связующее звено между научными открытиями, разработками и их практическим применением. Инженеры руководят производственными участками на промышленных предприятиях, в строительстве, сельском хозяйстве и других отраслях, работают в конструкторских бюро, лабораториях и научно-исследовательских учреждениях, занимаются вопросами организации производства, планирования и экономики. Они проектируют технологии, промышленное оборудование, машины, участвуют в проектировании и развитии систем контроля производства, автоматизации производства, бизнесе, процессах управления. Изучают причины ухудшения и сбоев производства, испытывают продукцию, определяя ее качество и т.д.

Для полноценной и качественной работы инженеру необходимы математические и технические способности; аналитический склад ума; концентрированность внимания; абстрактность мышления; склонность к исследовательской деятельности; навыки черчения.

Существует множество инженерных специальностей.

Инженер-энергетик – специалист с высшим техническим образованием в области разработки, производства или эксплуатации систем, предназначенных для теплового или электрического обеспечения. Его рабочие обязанности во многом определяются должностью и спецификой предприятия. В проектных и пусконаладочных предприятиях энергетики восстанавливают и проектируют электросети предприятий. На самих предприятиях энергетики обеспечивают бесперебойную работу системы, занимаются ее ремонтом, а также определяют технологический процесс работы с энергетическим оборудованием.

Инженер-конструктор – инженерная специальность, чья деятельность необходима для разработки и создания конечного (целевого) продукта из продуктов и ресурсов существующего материального производства. Он создает из имеющихся ресурсов новые объекты материальной культуры, организует и технически вооружает труд других людей.

Инженеры-конструкторы создают, проверяют и редактируют чертежи, рассчитывают проект конструкций, участвуют в согласовании и защите проекта, ведут технический и авторский надзор за его исполнением. В обязанности конструктора входит также испытание и наладка опытных изделий и деталей, которые планируется использовать в дальнейшем. Разрабатывает эскизные, технические и рабочие проекты и изделия различной сложности, организует технологические процессы изготовления деталей и сборки машин, проводит исследования в области конструирования, определяет показатели технического уровня проектируемых изделий, рассчитывает экономическую эффективность внедряемых проектов, составляет техническую документацию к разработанным конструкциям.

Инженер-механик – специалист с высшим техническим образованием в области проектирования, конструирования и эксплуатации технологического оборудования.

Инженер-механик проектирует, конструирует и эксплуатирует механическое оборудование, машины, устройства и аппараты, автоматические линии, средства и системы комплексной механизации и автоматизации производства, организует и проводит их монтаж, наладку, испытания. Он разрабатывает, планирует и организует технологические процессы, выбирает оптимальные условия их проведения. В его обязанности входит также планирование и проведение ремонта машин, составление технических заданий на реконструкцию действующих и создание новых установок. В сфере сельскохозяйственного производства инженер-механик руководит механизаторами, управляет всей механизацией сельского хозяйства.

Основная цель деятельности инженера-механика – проектирование механического оборудования и технологических процессов и организация обслуживания оборудования.

Инженер данной специальности – высококвалифицированный специалист, обладающий глубокими знаниями по теоретическим основам электротехники, теории автоматического регулирования, промышленной электронике и вычислительной технике.

Инженер-строитель работает в общестроительных и специализированных строительных, строительно-монтажных, пусконаладочных, эксплутационных, проектных, конструкторских и научных организациях.

Он осуществляет производственно-технологическую, организационно-управленческую, проектно-конструкторскую и исследовательскую деятельность в области строительства. Данные специалисты решают задачи, связанные с проектированием и строительством зданий и сооружений, систем и устройств водоснабжения и канализации, дорог и трубопроводов, линий электропередач и связи и других объектов.

В процессе своей профессиональной деятельности инженер-строитель рассчитывает, конструирует и разрабатывает строительные конструкции, фундаменты и основания, подземные части сооружений в различных грунтовых условиях. Разрабатывает и внедряет технологии изготовления и монтажа строительных конструкций, проекты организации строительства и производства строительных работ с применением комплексной механизации и передовых методов труда.

Инженер-строитель руководит строительными, монтажными и наладочными работами, контролирует их качество, осуществляет технический надзор за реализацией проектных решений и выполнением строительно-монтажных работ. Занимается нормированием труда и сметным делом в строительстве, инженерным обеспечением бригадного хозрасчета, составляет наряды и калькуляции затрат труда и заработной платы рабочих.

Инженер-металлург изучает и внедряет технологии производства различных металлов. В обязанности инженера-металлурга входит определение химического состава сплава, выбор подходящей температуры и времени обработки, контроль отливки и штамповки готового сплава, сварки нескольких готовых деталей. Он отвечает за проведение технологического процесса, предлагает новые технологии для удешевления готового продукта и сокращения энергозатрат.

Предметами профессиональной деятельности являются технологические процессы металлургической промышленности, переработки исходного сырья и производства металлопродукции повышенных потребительских свойств, технологии получения и обработки металлов и материалов, изучение структуры и свойств, оборудование горно-металлургического производства, системы автоматического управления металлургическим производством и контроля качества конечной продукции.

Инженер-технолог занят организацией производственных процессов или разработкой определенной технологии на производственных предприятиях. Он сам выбирает набор оборудования, на котором осуществляет технологический процесс, оптимальный режим работы, методы оценки результатов и контроля качества, ведет технологическую документацию. Инженер-технолог возглавляет рационализаторскую и изобретательскую работу предприятия по освоению производственных мощностей.

Инженер-технолог по сварке является специалистом в области технологии выполнения сварочных работ. Он руководит технологической подготовкой выполнения сварочных работ при изготовлении изделий; организовывает разработку и внедряет в производство прогрессивные методы сварки; контролирует соблюдение технологических режимов сварки, нормы расхода материалов.

Инженер-электрик способен выполнять любые работы по проектированию, монтажу, наладке, ремонту и модернизации линий электропередач и подстанций от низких до сверх- и ультравысоких напряжений, высокотехнологичному, безопасному и экономичному обслуживанию электрических сетей, тепловых и атомных станций с использованием новых прогрессивных технологий, оборудования и автоматизированных систем.

Горный инженер (маркшейдер) – специалист по проведению пространственно-геометрических измерений в недрах земли и на соответствующих участках ее поверхности с последующим отображением результатов измерений на планах, картах и разрезах при горных и геолого-разведочных работах.

Маркшейдер работает при разведке месторождений полезных ископаемых, на строящихся и действующих горных предприятиях, на строительстве подземных сооружений. Он занимается геодезическими измерениями и разметкой, и от их точности зависит качество работы проходчиков, строителей и т.д.

Горный инженер-механик – это специалист в области проектирования горно-перерабатывающих машин и механизмов, используемых на обогатительных и перерабатывающих производствах.

Данные специалисты занимаются проектированием, эксплуатацией и ремонтом горных машин и механизмов, используемых при разработке месторождений полезных ископаемых открытым и подземным способом.

Инженер-метролог занимается проверкой и регулировкой точности работы измерительных аппаратов и приспособлений. Главная цель его деятельности – приведение измерительных приборов в полное соответствие установленным стандартам. Метрологу необходимо разрабатывать поверочные схемы для различных видов измерений, инструкции, методики и прочую метрологическую документацию, а также проверять, ремонтировать и калибровать средства измерений. Он контролирует соответствие методов и средств измерений требованиям законодательства, проводит метрологическую экспертизу.

Инженер по стандартизации – это специалист в области обеспечения и оценки качества продукции, а также контроля за условиями эксплуатации технических средств (приборов, оборудования), закрепления в стандартах и нормативах правил для достижения экономии ресурсов при соблюдении безопасности производства.

Стандартизация – это целая наука, которая изучает, анализирует, обобщает и формулирует закономерности производственных процессов с целью достижения их оптимальной степени порядка.

Инженер по стандартизации контролирует техническую документацию, разрабатывает новые и пересматривает действующие стандарты, технические условия и другие документы по стандартизации и сертификации, работает над их внедрением на предприятиях. Изучает технический уровень продукции, особенности производства и результаты эксплуатации стандартизованных изделий и их отдельных элементов.

Радиоинженер занимается проектированием, разработкой и эксплуатацией специализированных радиоэлектронных устройств, контрольно-измерительных приборов для цифровых линий передачи информации, программно-технических средств организации каналов цифровой радиосвязи.

Радио и телевидение, компьютерная техника, приборы для научных исследований и медицины, системы мобильной радиосвязи – это далеко не полный перечень тех областей, где невозможно обойтись без радиоинженера. В них заинтересованы академические и отраслевые научно-исследовательские институты, вычислительные центры, проектные и конструкторские организации, производственные предприятия, прямо или косвенно связанные с радиоэлектронными приборами и аппаратами, вычислительной техникой, автоматизированными системами, программным обеспечением, различными приложениями.

Инженер-программист осуществляет деятельность в области проектирования, производства и эксплуатации программных средств на базе современных информационных технологий. Основной задачей инженера-программиста является разработка программ на основе анализа математических моделей и алгоритмов для решения научных, прикладных, экономических и других задач, обеспечивающих выполнение этих алгоритмов и задач средствами вычислительной техники.

В обязанности инженера-программиста входит разработка технологии, этапов и последовательности решения задач; выбор языка программирования и перевод на него используемых моделей и алгоритмов задач; определение информации для обработки на ЭВМ (ее объем, структура, макеты и схемы ввода, способ хранения и воспроизведения). Он занимается подготовкой программ к отладке и проведением отладки, проверкой программ на основе логического анализа, корректировкой их в процессе доработки. Осуществляет сопровождение внедренных программ и программных средств. Разрабатывает инструкции по работе с программами, оформляет необходимую техническую документацию.

Учитель физики

Учитель физики осуществляет обучение и воспитание обучающихся с учетом специфики преподавания учебного предмета «физика». Проводит уроки, дополнительные факультативные занятия, руководит предметными кружками. Составляет тематический план работы по предмету, обеспечивает выполнение учебной программы. Участвует в методической работе, использует наиболее эффективные формы, методы и средства обучения. Анализирует успеваемость учащихся, обеспечивает соблюдение учебной дисциплины. Формирует умения и навыки самостоятельной работы школьников, стимулирует их познавательную активность и учебную мотивацию. Добивается прочного и глубокого усвоения знаний по предмету, умения применять знания на практике. Оснащает и оформляет учебный кабинет. Изучает и учитывает в работе индивидуальные особенности учащихся, участвует в работе с родителями.

Физика считается одним из самых сложных предметов школьной программы, так как это динамично меняющаяся научная область. Поэтому учителю физики необходимо следить за всеми новостями в мире науки, знакомиться с новыми открытиями, техническими достижениями и изобретениями.

Основная задача учителя физики – научить детей понимать окружающий их мир, процессы, которые происходят вокруг них в повседневной жизни.

Интегрированное обучение

Интегрированное преподавание курса в школе, внеклассная работа, элективные курсы, дополнительное образование

Задумайтесь на несколько мгновений:

Зачем на свете физика нужна?

Зачем мы учим эту дисциплину?

Поможет в жизни нам она!

Скачать:


Предварительный просмотр:

Физика в поэзии и прозе

Поэты и писатели умеют видеть окружающий мир и образно описывать его. Во многих литературных произведениях мы встречаемся с различными явлениями природы в художественном воображении авторов. Физик, читая такие места, не может удержаться, чтобы не рассмотреть такие небольшие отрывки из произведений как задачи с физическим содержанием. Некоторые из них могут оказаться весьма непростыми - надо хорошо подумать, чтобы ответить правильно. Следовательно, есть возможность одновременно наслаждаться как художественными формами, так и красивыми решениями.

Начнем с поэзии.

Прочитайте отрывок из стихотворения И. Сурикова «Зима»:

«Стали дни коротки,

Солнце светить мало,

Ой, пришли морозы

И зима настала.»

Почему с наступлением зимы дни становятся короче?

  • В известном стихотворении "Зимнее утро" великий русский поэт Александр Пушкин хорошо описывает зимние пейзажи и одновременно, сам того не зная, ставит много интересных вопросов для любителей физики.

Послушайте и самостоятельно сформулируйте несложные физические задачи.

«Под голубыми небесами

Великолепньимы коврами,

Блестя на солнце, снег лежит;

Прозрачньий лес один чернеет,

И ель сквозь иней зеленеет,

И речка подо льдом блестит.»

Сколько здесь описано явлений и из какого раздела физики?

  • Воспевал природу также и Юрий Лермонтов. Лермонтовский пророк, гонимый и презираемый толпой, все же знает цену счастья.

«И звезды слушают меня,

Лучами радостно играя.»

Может кто-нибудь объяснить, как отличить на небе звезду от планеты?

Перейдем к прозе .

  • В. Короленко в произведении «На затмении» описывает такой пейзаж:

«День начинает заметно бледнеть. Лица людей принимают страшный оттенок, тени человеческих фигур лежат на земле бледные, неясные... Однако, пока остается тонкий серповидний ободок солнца, все еще царит впечатление сильно побледневшего дня... Но вот эта искра исчезла... Круглое, темное, враждебное тело, словно паук, впилось в яркое солнце...»

Почему тени стали бледными и нечеткими?

  • Михаил Пришвин так описывает охоту в одном из своих произведений:

«Мы идем с Ладой - моей охотничьей собакой - вдоль небольшого озерка. Вода сегодня такая, что летящий кулик и его отражение в воде были совершенно одинаковы: казалось, летели нам навстречу два кулика... Лада наметилась. Какого она выберет себе: настоящего, летящего над водой, или его отражение в воде - оба ведь схожи между собой как две капли воды. Вот бедная Лада выбирает себе отражение и, наверно думая, что сейчас поймает живого кулика, с высокого берега делает скачок и бухается в воду. А верхний, настоящий кулик улетает».

Догадываетесь, из какого произведения Пришвина взят этот отрывок?

А теперь физическая задача: Есть ли отличие между предметом и его отражением?

  • А вот отрывок из повести А.П. Чехова «Степь»:

«Егорушка... разбежался и полетел с полуторасаженной высоты. Описав в воздухе дугу, он упал в воду, глубоко погрузился, но дна не достал; какая-то сила, холодная и приятная наощупь, подхватила и понесла его обратно наверх».

О какой силе идет речь?

А вот четверостишье на украинском языке

Из стихотворения великого Тараса Шевченко:

«Вітер з гаєм розмовляє,

Шепче з осокою,

Пливе човен по Дунаю

Один за водою.»

Какие физические задачи можно увидеть в этом стихотворении? Конечно, здесь можно рассмотреть различные вопросы. Пожалуй, наиболее интересными являются следующие:

Первая задача - о ветре. Почему, как точно подметил поэт, «ветер с рощей разговаривает», а с осокой «шепчет»?

Вторую задачу можно обобщить так. Почему течение сносит лодку вниз по течению?

Использованная литература:

Бабин А.С. Фізика в літературних творах //Все для вчителя №6, 2002, Березень

Предварительный просмотр:

Физика в профессии строителя

Мы уверены, что у каждого из присутствующих имеется дом. Будь то частный дом, либо квартира. В разное время года свой дом защищает нас от разных климатических воздействий: жары, дождей, холода и т.д. Многие считают это чем-то обыденным и само собой разумеющимся свойством дома или квартиры, но далеко не многие задумываются или интересуются как же строители, каким способом они создают такой комфорт?!

Строительная физика - совокупность научных дисциплин, рассматривающих физические явления и процессы, связанные со строительством и эксплуатацией зданий и сооружений, и разрабатывающих методы соответствующих инженерных расчётов. Основными и наиболее развитыми разделами Строительной физики являются строительная теплотехника, строительная акустика, строительная светотехника. Получают развитие и др. разделы. Становление Строительной физики как науки относится к началу 20в. До этого времени вопросы Строительной физики обычно решались инженерами и архитекторами на основе практического опыта.

Перспективы дальнейшего развития Строительной физики связаны с использованием новых средств и методов научных исследований. Так, например, структурно -механические характеристики материалов и их влажностное состояние в конструкции зданий изучаются с помощью ультразвука, лазерного излучения, гамма-лучей, с применением радиоактивных изотопов и т.д.

Методы строительной физики основаны на анализе физических процессов, происходящих в ограждениях и в окружающей их среде. Для них используют лабораторные и натурные исследования этих процессов с использованием математических методов физического моделирования.

На каждое строительное сооружение действуют многочисленные силы, например, силы сжатия и растяжения. Эти силы нагружают строительное сооружение. Поэтому их называют нагрузками. Нагрузки происходят за счет самого сооружения и могут быть обусловлены внешними воздействиями. Различают постоянные и временныенагрузки

Наружные ограждающие конструкции зданий должны удовлетворять следующим теплотехническим требованиям: обладать достаточными теплозащитными свойствами, чтобы не допускать излишних потерь тепла в холодное время года и перегрева помещений летом в условиях жаркого климата; температура внутренней поверхности ограждения не должна опускаться ниже определенного уровня, чтобы исключить конденсацию пара на ней и одностороннее охлаждение тела человека от излучения тепла на эту поверхность; обладать воздухопроницаемостью, не превосходящей допускаемого предела, выше которого чрезмерный воздухообмен снижает теплозащитные свойства ограждений, приводит к дискомфорту помещений и излишнимтеплопотерям; сохранять нормальный влажностный режим в процессе эксплуатации здания, что особенно важно, поскольку увлажнение ограждения снижает его теплозащитные свойства и долговечность.

Естественное освещение можно обеспечить через окна в наружных стенах, через световые фонари и свето - прозрачные покрытия, а также использовать в строительстве фонтанов.

Экологический дом – это качественное, долговечное, доступное индивидуальное жильё. Использование натуральных, природных материалов позволяет создать благоприятный для здоровья микроклимат дома.

Кроме того, доступность материала выгодно влияет на стоимость строительства. При соблюдении технологий и высоком качестве работ, срок эксплуатации дома очень велик. Процесс строительства не требует излишних трудозатрат.

Предварительный просмотр:

Физика в профессии железнодорожника

Летом мы много путешествовали, используя, в том числе и железнодорожный транспорт. Большое количество людей отдает ему предпочтение, он используется для грузоперевозок, для транспортировки различного оборудования и техники.

Сегодня невозможно представить себе жизнь современного человека без быстрой и надёжной связи между людьми, живущими в разных городах и странах. Иногда можно спокойно дожидаться новостей, неторопливо путешествуя в почтовой карете, но бывают обстоятельства, например во время войны, когда связь должна быть молниеносной, ведь во время боевых действий, как известно, “промедление смерти подобно”.

В настоящее время широко используются электрические железные дороги. И здесь без знаний физики не обойтись. Электрические железные дороги получают электрическую энергию от энергосистем, объединяющих в себе несколько электростанций. Электрическая энергия от генераторов электростанций передается через электрические подстанции, линии электропередачи различного напряжения и тяговые подстанции. На последних, электрическая энергия преобразуется к виду (по роду тока и напряжения) используемому в локомотивах, и по тяговой сети передается к ним. Здесь работают законы электростатики, электродинамики, электромагнетизма.

Надежность работы электрифицированных дорог зависит от надежности работы системы электроснабжения. Поэтому вопросы надежности и экономичности работы системы электроснабжения существенно влияют на надежность и экономичность всей электрической железной дороги в целом.

Обмен служебной информацией и командами управления между локомотивом и хвостовым вагоном по цифровому радиоканалу диапазона 160 Мгц /мегагерц/ осуществляется посредством спутниковой связи.

Мы живем в век новых информационных технологий, информация обновляется очень быстро и надо успевать идти в ногу со временем. Настоящим открытием явилась физика полупроводников,в т.ч. и на железнодорожном транспорте.Пожалуй, самым удивительным является изобретение гетероструктур. Оно принадлежит Российскому академику Жоресу Ивановичу Алфёрову.

Благодаря его открытиям появилась возможность развития телекоммуникаций и информации на железной дороге.

Эффективность работы железных дорог опирается на внедрение новых принципов и методов управления с применением современных информационных технологий и создание единого инфокоммуникационного пространства отрасли.

Для этого необходимо строительство единой магистральной цифровой сети связи. Общая протяжённость волоконно-оптических линий связи составляет более 52 тыс. км.

Целью проекта является внедрение перспективных технологий во все сферы деятельности федерального железнодорожного транспорта.

На магистральную цифровую сеть связи накладывается глобальная сеть передачи данных, и на её основе осуществляется введение телекоммуникационных технологий. Это позволяет управлять подвижным составом на больших перегонах из создаваемых центров диспетчерского управления перевозками. Наиболее эффективными являются автоматизированные системы учёта и управления вагонным, локомотивным, контейнерным парками, управления пассажирскими перевозками, оформление и ведения перевозочных документов.

Знания электроники электротехники позволяют профессионально использовать приборы управления различными системами.

Предварительный просмотр:

Физика в искусстве

Великая поэзия нашего века – это наука с удивительным расцветом своих открытий.
Э. Золя

Физика и искусство… Кажется, они не совместимы. Однако это не так, и сегодня мы попытаемся это доказать. Представители искусства, порой и сами этого не зная, используют для своих творений физические закономерности. А физики… они любят и ценят искусство, которое пробуждает их творческую мысль, вдохновляет и тем самым помогает постигать тайны природы.

А. Эйнштейн в минуты отдыха играл на скрипке; Д. Ландау любил читать стихотворения Лермонтова и Байрона; М. Планк и В. Гейзенберг были отличными пианистами; создатель первого в мире ядерного реактора И.В. Курчатов часто посещал симфонические концерты и за три дня до смерти слушал "Реквием" Моцарта в консерватории, виднейший русский писатель XIX в. А.И.Герцен окончил физико-математический факультет Московского университета и специализировался в области астрономии.

Физика и живопись

Науку и искусство объединяют стремления к познанию и к творчеству. Последнее означает создание новой информации, реализуемое практически, а не путем логического рассуждения.

  • Сложность структуры цвета, разнообразие цветов и их оттенков;
  • Оптика;
  • Физика и реставрационная техника.

Первым понял «устройство» радуги И.Ньютон, он показал, что «солнечный зайчик» состоит из различных цветов.

Позднее физик и талантливый музыкант Томас Юнг покажет, что различия в цвете объясняются различными длинами волн. Юнг является одним из авторов современной теории цветов наряду с Г.Гельмгольцем и Дж.Максвеллом. Приоритет же в создании трехкомпонентной теории цветов (красный, синий, зеленый – основные) принадлежит М.В.Ломоносову, хотя гениальную догадку высказывал и знаменитый архитектор эпохи Возрождения Леон Батиста Альберти.

Одним из важнейших факторов в живописи является «Оптика»: линейная перспектива (геометрическая оптика), эффекты воздушной перспективы (дифракция и диффузное рассеяние света в воздухе), цвет (дисперсия, физиологическое восприятие, смешение, дополнительные цвета). Полезно заглянуть и в учебники живописи. Там раскрыто значение таких характеристик света, как сила света, освещенность, угол падения лучей.

Различные ощущения света и цвета можно описать при изучении глаза, рассмотреть физическую основу оптических иллюзий, самой распространенной из которых является радуга.

Физика и реставрационная техника

Методы: рентгенографии, фотографирования в ИК-лучах, спектрографии и микрохимического анализа, макрофотографии – съёмка на довольно большом расстоянии через сильно увеличивающий объектив позволяет выявить «почерк» художника, т.е. движение кисти, манеру наложения красок.

Физика и скульптура

Физика искусства в кинетических скульптурах Дэвида Роя

Энергия ни от куда не берётся и ни куда не исчезает просто так. Представим биллиардный стол. Мы ударим по белому шару и он полетит в красный. Шары столкнутся. Белый остановится и передаст свою энергию красному, а красный полетит от этой энергии дальше. Если бы красному шару ничего не мешало, то он летел бы бесконечно. Но его тормозит трение о стол и даже сопротивление воздуха, поэтому он замедляется и останавливается исчерпав всю энергию на сопротивление.


Подписи к слайдам:

Физика в разных профессиях. Выполнила ученица 9 класса А Олейник Анастасия

Физика в профессии музыканта. Есть ли что-нибудь непоющее в этом мире? Звуковые явления. Основные характеристики музыкальных звуков: громкость, высота тона, тембр. Звучание камертона. Звучание голосовых связок.

Физика в профессии врача. Манометр - прибор, измеряющий давление. Термометр - прибор,измеряющий температуру.

Физика в профессии водителя. Знание физики в профессии водителя связано с устройством и работой автомобиля, безопасностью движения, грамотной эксплуатацией автомобиля. Аккумулятор. Генератор.

Физика в профессии повара. Кухонные установки, основанные на явлении теплопроводности; на кипении воды при различных давлениях; установки с моторами; установки, основанные на совместном применении рычага, ворота, винта. Миксер. Пароварка.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Физика – это наука о природе в самом общем смысле. Она изучает механические, электрические, магнитные, тепловые, звуковые и световые явления. Физику называют “фундаментальной наукой”. Поэтому ее законы используются практически во всех направлениях: медицине, строительстве, во всех областях, связанных с техникой, в электронике и электротехнике, оптике, астрономии, геодезии и т.д.

Физика в строительстве

Строительная физика детально изучает явления и процессы, связанные со строительством и эксплуатацией зданий и сооружений. Эти явления и свойства характеризуются физическими величинами. Строительная деятельность неразрывно связана с определенными условиями среды: температура, влажность, состав воздуха, плотность вещества.

Сначала нужно изучить местность, где будет проходить строительство. Этим занимаются геодезисты. Инженерная геодезия изучает методы и средства геодезических работ при проектировании, строительстве и эксплуатации различных инженерных сооружений. Задачи геодезии решаются на основе результатов специальных измерений, выполняемых с помощью геодезических приборов, так как необходимо оценить участок предполагаемого строительства. необходимо получить информацию о рельефе местности. Все эти расчеты служат основой для проектирования сооружений и зданий. И здесь никак не обойтись без законов физики!

Физика в профессии Архитектора

Профессия архитектора предполагает архитектурное проектирование на профессиональном уровне. В обязанности специалиста входят организация архитектурной среды, проектирование зданий и разработка объемно-планировочных и архитектурных решений.

В архитектуре большое значение имеют законы физики которые помогают рассмотреть роль понятий УСТОЙЧИВОСТЬ, ПРОЧНОСТЬ, ЖЕСТКОСТЬ КОНСТРУКЦИЙ, а также роль перекрытий и фундамента в строительстве зданий, деформацию элементов сооружений и расчет. Использование законов статики при

Физика в профессии врача

В настоящее время обширна линия соприкосновения физики и медецины, и их контакты все время расширяются и упрочняются. Нет ни одной области медицины, где бы ни применялись физические приборы для установления заболеваний и их лечений.

Важнейшей частью организма человека является кровеносная система. Действие кровеносной системы человека можно сравнить с работой гидравлической машины. Сердце работает подобно насосу, который гонит кровь через кровеносные сосуды. Во время сжатия сердца кровь выталкивается из сердца в артерии, прохо­дит через клапаны, не пускающие ее обратно в сердце. Затем оно расслабляется и в продолжение этого времени наполняется кровью из вен и легких. Открытие простых способов измерения кровяного давления облегчило врачам возможность распознавать болезни, признак которых - ненормальное давление крови.

Физика в профессии повара

Очень важными разделами физики для повара являются молекулярная физика и термодинамика. Как говорится- хороший результат случайным быть не может... Так, для приготовления хорошего бифштекса, необходимо его положить на горячую сковороду и добавить небольшое количество жира или масла.

Масло закупорит отверстия в мясе и оно приготовится сочным

Физика в профессии фотографа

Профессия фотографа тесно связана с наукой “Физика”.

Такие понятия как фокус, линза и т.п. относятся к этой профессии.

Главным элементом аппаратуры является линза. Без нее не было бы ни микроскопа, ни телескопа, ни очков... А это значит, что Многие люди, которым за 50, не могли бы читать, биологи изучать клетку, а астрономы космос.

Физика в професии инженер по ядерной технике

Тут физику применяют для решения проблем обогащения ядерной энергией.

Физики-ядерщики вместе с физиками-атомщиками изучают строение атома и процессы в нем и не редко делают великие открытия открытия.

Физика в професии инженер-нефтяник

Использование двигателей внутреннего сгорания, развитие машиностроения, авиационной промышленности стало возможным с открытием все новых и новых нефтяных месторождений. Огромные запасы нефти позволяют развивать индустрию.

В этой профессии исследователи открывают все новые способы улучшения добычи нефти и природного газа.

Физика в машино-, авиа- и ракетостроении

Обязательно должен знать физику и понимать суть физических процессов конструктор ракет, космических станций, спутников, противоракетных систем...

Специалист по информатике и компьютерным технологиям

В современной жизни появилась масса средств информационных технологий, с помощью которых можно создавать презентации к урокам, воссоздавать эксперименты и научные открытия древних учёных, и всё это при помощи анимации, растровой и векторной графики, видео. Все эти способы сильно облегчают жизнь современным учителям и преподавателям.

Импульс превращается в цифры, цифры в двоичный код... поэтому физика присутствует в информатике.

Внеклассное мероприятие по физике «Физика в моей будущей профессии».

Форма - телепередача «Пусть говорят!»

Цели: 1) Профориентация учащихся;

2) Формирование научного мировоззрения (показать практическую значимость

предмета).

3) Экологическое воспитание.

4) Развитие интереса к физике.

Методы и приемы : постановка проблемной ситуации.

Наглядность : видеоматериал.

(…Музыка, аплодисменты зрителей…Выходит ведущий Андрей Малахов).

Ведущий. Добрый, добрый день дорогие зрители, студия! Да, не сомневайтесь - в эфире «Пусть говорят» и я - Андрей Малахов.

Тема нашей сегодняшней передачи «Физика в моей будущей профессии». Перед выходом в эфир мы провели небольшой опрос среди студентов первого курса профессионально-технического комплекса «Ступени». Был задан вопрос: «Нужна ли тебе физика? И пригодится ли она в твоей будущей профессии?» Каковы же результаты?

В группах 07 Ш-19, 07 Ш-22, 07 К-4 100% студентов ответили утвердительно на заданный вопрос. В группе 07 Ш-20 - 96%, 07 К-1 -92%, 07 Ш-21-89%, 07 К-2- 69%, 07 К-3- 68% ответили «да», остальные ответили «нет».

Посмотрим небольшой сюжет.

(Демонстрируется видеосюжет «Мотивация»).

Ведущий. Нужна ли физика в профессии газоэлектросварщиков, электромонтеров, сантехников, строителей? Обо всем этом и другом - в ближайшее время. Не переключайтесь!

Сегодня в студии у нас находятся люди разных профессий и специальностей. Мы надеемся услышать от них, где нужна физика в их профессии.

Я приглашаю первого героя нашей передачи - газоэлектросварщика……………

Встречаем!

(Под музыку выходит газоэлектросварщик).

Газоэлектросварщик . Здравствуйте! По профессии я - газоэлектросварщик. Эта профессия требует большого запаса навыков и знаний. Ведь мне приходится выполнять очень много операций: газовая, дуговая и кислородная сварка, резка металла , гнутье труб.

Для этого мне необходимы знания из разных областей физики. Базисным разделом спецтехнологии газоэлектросварщиков является молекулярная физика, хотя немалое внимание приходится уделять электродинамике, колебаниям и волнам, оптике и квантовой физике, некоторым переходным проблемам.

Мне бы хотелось привести пример соединения металлов сваркой и объяснить его на основе знаний, которые имеются у меня из физики. Я предлагаю посмотреть этот процесс, а потом я прокомментирую.

(Видеосюжет «Газоэлектросварка»).

Для соединения металлов, способных переходить в пластическое состояние при нагревании до температур более низких, чем температура плавления (например, сталь, алюминий), применяют газопрессовую, контактную сварку и сварку трением. При этом детали в месте их соединения нагреваются пламенем газов, сжигаемых по выходе из сварочной горелки, либо за счет теплоты, выделяемой при прохождении электрического тока через находящиеся в контакте соединяемые части, либо за счет теплоты, выделяемой при трении поверхностей свариваемых деталей, а затем детали сжимаются и свариваются. Почему это происходит? Ответ таков: при сжатии соединяемых деталей, находящихся в пластическом состоянии, с поверхностей их соприкосновения выжимается (удаляется) пленка оксидов, и при этом зерна одной детали взаимно проникают в зерна другой. Происходит диффузия . Это обеспечивает состояние, при котором начинают действовать силы межмолекулярного сцепления соединяющихся деталей, достаточные для их прочного соединения.

Как видите, сварка - физический процесс.

Ведущий. Спасибо, большое! А я приглашаю следующего гостя - монтажника-сантехника…………..

Сантехник. Здравствуйте! Я по профессии - монтажник санитарно-технических устройств. В моей работе знания по физике очень необходимы. В частности, знания из области молекулярной физики, термодинамики, механики. Приходится заниматься гибкой труб, отопительными системами (водяными и паровыми), сваркой.

Возникает ряд проблем, которые решаются благодаря знаниям.

Такая проблема спецтехнологии: почему при гибке труб в горячем состоянии нельзя набивать трубы влажным песком? Данное правило является одним из основных при горячей гибке, и его соблюдение предотвратит разрыв трубы вследствие парообразования, возникающего при нагреве влажного песка.

Слесарям-сантехникам приходится выполнять значительный объем работ по разборке, притирке и сборке арматуры санитарно-технических систем, которая служит для управления работой и обеспечения безопасности их эксплуатации.

Почему трудно разобрать резьбовое соединение, долго находившееся в туго завинченном состоянии, даже в том случае, когда оно не подвержено коррозии? Дело все в диффузии молекул на границе соединения болт-гайка.

В системе отопления действуют сложные физические процессы. Иногда нелегко ответить, казалось бы, на простые вопросы. Например, увеличивается ли внутренняя энергия воздуха в комнате при включении нагревательных приборов, когда температура воздуха увеличивается? Нет. Часть воздуха уходит наружу, и давление остается постоянным.

Не всегда правильно определяется абсолютное давление пара в котле. Между тем оно равно сумме избыточного давления парового котла, определяемого манометром, и барометрического давления.

Тепловые процессы в отопительных системах подчиняются первому и второму законам термодинамики.

Как видите и в моей профессии очень необходимы знания по физике.

Ведущий. Спасибо за содержательный рассказ, а мы встречаем следующего гостя - техника-автомеханика…………..

Автомеханик. Здравствуйте! Я работаю техником - механиком по обслуживанию автомобильного транспорта. Все мы знаем, что физика - основа техники. Большинство автомобилей используют двигатели внутреннего сгорания. Работа двигателя основана на следующих ключевых этапах:

1) адиабатное сжатие;

2) изохорный подвод тепла;

3) адиабатное расширение;

4) изохорный отвод тепла.

Со всеми этими процессами мы знакомы - изучали их на уроках физики.

В настоящее время необычайно раздвинулись границы творчества молодых инженеров, техников, рабочих. И в эти новые горизонты вошли проблемы, которые, казалось бы, выходят за рамки основной профессии. (В это время демонстрируется видеосюжет «Город и автомобили»). С одной стороны - здорово, что в настоящее время появилось очень много различных конструкций автомобилей - легковых, грузовых, но сколько двигателей, работая ежедневно, «обогащают» наш воздух вредными примесями? Автомобили загрязняют почву. Если используется бензин с добавлением свинца, то они загрязняют почву этим тяжелым металлом вдоль автодороги в полосе шириной 50-100 м, а если дорога идет вверх и машины газуют, то загрязненная полоса имеет ширину до 400 м!

Свинец, загрязняющий почву, накапливается растениями, которыми питаются животные. С молоком и мясом металл попадает в организм человека и может стать причиной тяжелых болезней.

Еще больший вред окружающей природе наносит отработанное машинное масло. Если оно попадает в водоемы , то 1 л масла может сделать непригодной для питья и жизни рыб 1 млн. литров воды.

Эти факты заставили меня задуматься над вопросом: как уменьшить количество выхлопных газов и машинного масла в окружающую среду?

Уже разработаны двигатели на водородном топливе - экологически чистые, но водород - не дешев.

Пока еще нет установившейся технологии извлечения водорода из воды. Не решены проблемы его транспортировки. Хранить жидкий водород можно с помощью так называемой сверхэффективной изоляции. Это значит, что между наружной и внутренней стенками хранилища необходимо расположить около двух десятков отражающих тепловые лучи экранов, отделенных друг от друга вакуумом .

Я, как молодой специалист, вижу свою задачу в решении этих вопросов. И быть может именно нам, молодым, удастся обеспечить безопасное существование человека на нашей планете.

Ведущий. Да, действительно, есть над чем задуматься. Мы желаем вам успехов в осуществлении своих целей. А мы встречаем следующего участника нашей передачи - технолога по производству продуктов питания……….

Технолог питания . Здравствуйте! Я - технолог по производству продуктов питания. Казалось бы, какое отношение может иметь физика к моей профессии? Оказывается, самое прямое. Позвольте мне привести несколько примеров, и вы в этом убедитесь сами.

Приготовление консервированных огурцов, помидоров, компотов основано на явлении диффузии. Молекулы соли и сахара проникают в овощи и фрукты и поэтому они становятся солеными или сладкими.

Все мы знаем, что жареное (будь то картошка или мясо) всегда вкуснее вареного. А вкус зависит от температуры термической обработки. Температура кипения воды 100ºС, а масла - 200ºС. Поэтому и вкус получается разный.

А моно ли сварить мясо высоко в горах? Оказывается, нет, так как температура кипения воды зависит от давления. А высоко в горах давление меньше, чем у поверхности земли, и вода там будет кипеть при температуре 80ºС, а этой температуры недостаточно, чтобы сварилось мясо. Поэтому в горах мясо будем жарить на костре.

В каком чайнике (белом или черном) вода остынет быстрее? Конечно, в белом. Ведь тела белого цвета излучают энергию, не поглощая ее.

А вот когда мы варим гречневую кашу, то ее можно редко помешивать, а когда варим манную, это надо делать часто: иначе она подгорит. Почему? Гречневая крупа имеет меньшую плотность, то есть крупинки находятся друг от друга на большом расстоянии, а манная крупа имеет плотность большую и ко дну кастрюли может пригореть.

Как уже сегодня говорилось, физика - основа техники. Мы в своей работе используем различные современные электрические приборы - плиты, духовые шкафы, микроволновые печи, электрофритюрницы, миксеры, кофемолки и кофеварки, которые изобрели и создали ученые-физики. И в продолжение темы следующий сюжет.

(Видеосюжет «Автоклав»).

Ведущий . Благодарим за информацию. И приглашаем сюда строителя……..

Строитель. Добрый день! Моя профессия - строитель широкого профиля. В основе моей работы лежит применение знаний из всех областей физики. Из механики необходимо знать, что такое сила тяжести, вес тела, сила давления. Так как в строительстве используются твердые, жидкие вещества, газы, необходимо знать их характеристики, такие как: линейное расширение, вязкость, модуль упругости. Эти знания - из молекулярной физики.

Мы, строители, применяем различные приборы - уровень, геодезический прибор . Как правило, все эти приборы - оптические. Значит, знание раздела «Оптика» также необходимо.

При забивании свай не обойтись без закона сохранения энергии.

Без знаний электродинамики тоже не обойтись: все строительные инструменты - электрические, а зимой, чтобы не замерзал бетон используют электропрогрев электродами.

Строим на больших глубинах с помощью кессонов - это специальное сооружение, внутри которого находится воздух, и можно выполнять строительные работы на дне моря. Только необходимо рассчитать давление столба воды на сам кессон.

При использовании , таких как песок, шлак, исследуем их состав с помощью спектрального анализа, а также на предмет радиационной опасности. То есть знания квантовой и ядерной физики необходимы.

В последнее время широкое применение находят композиционные материалы. И о них пойдет речь в следующем сюжете.

(Видеосюжет «Композиционные материалы»).

Ведущий . Спасибо. Приглашаем участника нашей программы……….-техника-программиста.

Программист . Здравствуйте! Моя специальность - техник-программист. Современная электронная вычислительная машина - это сложнейший комплекс устройств, восхищающий своим технологическим совершенством и разнообразием физических принципов работы. Для представления и обработки информации в ЭВМ используют различные физические явления и процессы, например, электрический ток или магнитный поток. Наличие или отсутствие электрического тока, уровня напряжения различной величины или полярности, величины магнитного потока рассматриваются как сигналы ЭВМ.

Элементами ЭВМ являются триггеры, полупроводники, диоды, транзисторы, сердечники, резисторы, проводники. Запись информации осуществляется с помощью магнитных элементов. Предлагаю посмотреть сюжет.

(Видеосюжет «Электронно-лучевая трубка»)

Но уже широкое применение находят дисплеи на жидких кристаллах. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нем возникает изображение, состоящее из микроскопических точек. Получается изображение весьма высокого качества, потребляя ничтожное количество энергии.

Как видите, мне как технику-программисту тоже необходимы знания по физике.

Ведущий. Большое спасибо! Встречаем нашего последнего героя - электромонтера………

Электромонтер .Добрый день! Я по профессии - электромонтер. Сомнений даже не возникает в том, нужна ли мне физика. Ведь необходимы очень прочные знания о постоянном и переменном электрическом токе, знание характеристик тока - сила тока, напряжение, сопротивление проводников, мощность тока.

Очень часто происходят аварии в электрических цепях, вызванные коротким замыканием, происходящие при резонансе. Чтобы этого не произошло, необходимо уметь правильно производить расчеты электрических цепей.

При несоблюдении техники безопасности , например, при повышенной влажности , можно получить очень серьезные травмы. Поэтому необходимо знать, как ведет себя электрический ток в различных средах.

Также постоянно имеем дело с электроизмерительными приборами, а ими нужно уметь пользоваться, снимать правильно показания.

В электропроводках используются различные виды соединений. Уметь читать схемы, самим собирать электрические цепи - это очень необходимо. И небольшой пример - в следующем сюжете.

(Видеосюжет «Соединение проводников»).

Ведущий. Спасибо! Спасибо всем. Сегодня у нас в гостях побывали люди разных профессий и как видите - всем им необходимо знание такого предмета как физика. Мы надеемся, что те ребята, которые затруднились ответить на вопрос «Нужна ли физика в моей будущей профессии?», теперь ответят «Да! Нужна!».

Мы желаем вам успехов в изучении этого нелегкого, но интересного предмета, и прощаемся с вами. До свидания! Всего вам доброго!

(Под музыку участники встают и прощаются).

Физика – востребованная область знаний. С каждым десятилетием благодаря развитию технологий появляются новые профессии, связанные с физикой. Выпускники и выпускницы технических вузов работают в разных областях от преподавания и науки до производства и космических технологий.

Физические дисциплины охватывают большой массив знаний, без которых невозможны развитие современной науки и работа промышленных предприятий. Физическая наука тесно связана с другими естественнонаучными дисциплинами и неотрывна от производства.

Любая машина, любой даже самый сложный компьютер или станок работают по физическим законам, благодаря точным расчетам высококвалифицированных специалистов. Таким специалистом может стать любой абитуриент, выбрав профессию, для которой нужна физика.

Физическая дисциплина лежит в основе технического прогресса и решает множество задач:

  • поиск и освоение новых источников энергии;
  • создание прочных, легких, дешевых строительных материалов;
  • усовершенствование старых и разработка новых технологий;
  • автоматизация и роботизация производства;
  • создание электронно-вычислительной техники;
  • повышение КПД производственных машин;
  • проектирование машин, двигателей, навигационных систем и т.д.;
  • охрана природопользования, защита от радиоактивного излучения, создание безопасных условий жизни;
  • электрификация производств, дорог, сельского хозяйства и страны в целом.

Основные направления

Прежде чем разобраться, для каких профессий необходима физика, стоит рассмотреть все ее направления. Она относится к точным наукам, но тесно взаимосвязана с химией, биологией, экологией, медициной.

Физическая наука изучает:

  • механику;
  • электричество;
  • магнитное излучение;
  • физические свойства металлов;
  • полупроводники, проводимость;
  • свойства веществ при высоких давлениях;
  • свет, оптические явления, лазерное излучение;
  • радиацию и методы ее применения;
  • акустику;
  • происхождение и эволюцию Вселенной;
  • звезды, черные дыры, планеты и другие космические объекты;
  • плазму и методы ее применения;
  • термодинамику;
  • элементарные частицы и квантовые поля;
  • ядерные проблемы энергетики.

Охватить всю физическую науку довольно сложно. В каждом разделе найдется тысяча неизученных вопросов и множество узконаправленных квалификаций. Выбрав одно из направлений, можно подобрать конкретные специальности.

Список профессий

Профессии, где нужна физика и смежные дисциплины, подойдут абитуриентам с математическим складом ума. Некоторые педагоги и родители немотивированно считают, что технические профессии не для девушек.

Однако на предприятиях успешно работают инженеры, технологи, аналитики, проектировщики женского пола. Профессии, связанные с физикой, для девушек откроют перспективы карьерного роста в технической области с достойной оплатой труда.

Не только девушки, но и юноши плохо представляют роль физики в профессиональной подготовке. Какую же профессию выбрать с хорошими оценками по физике?

Промышленность

На первом месте стоит техническая физика. На производстве постоянно требуются специалисты, разбирающиеся в новых технологиях, которые смогут усовершенствовать работу заводов, повысить производительность, сократить расходы, не теряя качества продукции.

Существует множество специальностей технической физики. Работа в этой области даст возможность применить законы природы и технологии на практике. Основная профессия в данной отрасли – инженер определенной квалификации. В таблице описаны наиболее востребованные области, где может работать выпускник.

Должность Обязанности Куда идти работать
Механик Разработка технологий автомобилестроения, проектирование автомобилей, двигателей Завод автомобилестроения, частные компании, разрабатывающие новые модели автомобилей
Нефтяник Разработка систем добычи нефти и газа, совершенствование оборудования, внедрение новых технологий Нефтегазодобывающая промышленность
Специалист машиностроения Конструирование и испытание сложных машин: ракет, самолетов, орбитальных станций, спутников Государственные и частные компании аэрокосмической отрасли
Медик Разработка и внедрение сложного медицинского оборудования: томографов, спектрофотометров, термостатов и т.д. Сфера теоретической медицины, частные компании, разработки оборудования
Ядерщик, атомщик Изучение строения атомов, утилизация ядерных отходов, налаживание и поддержка атомных электростанций, ядерного оружия, реакторов Военная отрасль, медицина, промышленность
Аналитик Изучение особенностей работы любой техники, расчет рисков Любое промышленное предприятие
Технолог Организация производственных процессов, разработка и внедрение технологий на производстве, контроль качества, освоение мощностей Предприятие любой отрасли
Конструктор Проектирование деталей, станков, оборудования Судостроительные, авиационные, приборостроительные заводы

Обратите внимание! Специальность инженер-физик – общее название профессии, которой обучают в вузах разной направленности. В зависимости от квалификации выпускник становится инженером в области ядерной энергетики, кибернетики, робототехники, металлургии и т.д.

Наука

Наиболее интересные и прогрессивныеспециальности связаны с научной отраслью. С развитием и требованиями научного знания их список постоянно пополняется. Выпускники, которые хотят заниматься исключительно научной деятельностью, поступают после вуза в аспирантуру.

Как правило, уже со студенческих времен амбициозные студенты начинают работать над одной проблемой и продолжают исследование уже в профессиональной деятельности, становясь экспертами в определенной области.

Если абитуриента волнуют проблемы современной науки, захватывают теоретические расчеты и эксперименты, увлекают вопросы космоса, то наука станет верным выбором.

Научные профессии, связанные с физикой:

  • астроном исследует строение, происхождение, эволюцию Вселенной;
  • астрофизик изучает строение небесных тел, химический состав, свойства звезд, солнца, туманностей, черных дыр и т.д.;
  • биофизик изучает физические и химические процессы во всех живых организмах на всех уровнях организации, влияние различных явлений на живой организм (вибрации, звук, радиация и т.д.);
  • математик производит расчеты, проектирует, решает практические задачи, связанные с физическими явлениями.

Возьмите на заметку! Физик– научный работник, ученый, который занимается проблемами разных областей. Зачастую работа связана с вычислениями, экспериментами, проработкой гипотез или поиском ошибок в научных работах коллег.

Другие отрасли

По специальности физика выбрать, кем работать, не составит труда. Физические и точные науки не предполагают каких бы то ни было ограничений в поиске работы. Если идти на завод не хочется, а наука не привлекает, есть другие области, где пригодится техническое образование.

Несколько профессий, связанных с физикой, приведем списком:

  • преподаватель в школе или вузе;
  • лаборант;
  • энергетик;
  • наладчик высокоточных приборов;
  • метеоролог;
  • наноинженер;
  • младший научный сотрудник;
  • геофизик;
  • геммолог (специалист по драгоценным камням);
  • специалист по композитным материалам;
  • популяризатор науки, научный журналист.

Совет! Получить специальность по физическим дисциплинам можно в технических вузах, предлагающих обучение профессии для абитуриентов. Это не только ведущие вузы Москвы (МГУ им. М.В. Ломоносова) и Петербурга (СПбГПУ), но и любые технические вузы страны (УрФУ им. Б. Н. Ельцина, ЮФУ, КФУ, ТУСУР и т.д.).

Физические дисциплины

Независимо от дальнейшей профессиональной деятельности, в технических вузах разных направлений преподают общие физические дисциплины:

  • теоретический курс;
  • прикладной курс;
  • высшая математика;
  • квантовая механика;
  • радиофизика;
  • электроника;
  • оптика;
  • нанотехнологии;
  • строение реального кристалла;
  • свойства полимерных материалов и полупроводников;
  • молекулярное строение тел.

Полезное видео

Подведем итоги

Значительную роль физика играет в профессиональной деятельности. Обучение в физико-технических вузах обеспечит надежное будущее, т.к. ни один завод не обходится без специалистов технических профессий. Со знанием физических дисциплин можно свободно выбирать, кем работать и чем заниматься всю жизнь.

Вконтакте